兰艳艳

编辑:园地网互动百科 时间:2020-01-20 17:08:38
编辑 锁定
本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!
兰艳艳,女,1982年10月出生,副研究员。2001年9月至2005年7月山东大学数学科学学院统计专业本科,获得理学学士学位;2005年9月保送至在中国科学院数学与系统科学研究院硕博连读,师从马志明院士,获得概率论与数理统计专业博士学位;2011年7月开始在中国科学院计算技术研究所任职助理研究员;2013年10月被聘为中国科学院计算技术研究所副研究员。
主要从事机器学习、数据挖掘方面的研究,特别是在排序学习以及统计学习理论的研究方面,做出了一系列研究成果。已经在ICML,NIPS,SIGIR,WWW,CIKM,WSDM,UAI等本领域顶级国际会议上发表录用论文10余篇,其中排序学习的工作获得SIGIR2012的最佳学生论文奖。 担任SIGIR,KDD,AIRS,CCIR,TKDE,TIST,PRL,计算机学报等会议和期刊的程序委员会委员或审稿人。
中文名
兰艳艳
出生日期
1982年10月
职    业
副研究员
毕业院校
山东大学

兰艳艳基本信息

编辑
姓名 兰艳艳
性别 女
职称 副研究员
研究方向 机器学习,排序学习,统计学习理论,数据挖掘

兰艳艳简历

编辑
作为项目负责人,主持国家自然科学青年基金项目1项;作为骨干成员参与国家863计划项目,973子课题和多项国家自然科学基金项目。

兰艳艳研究方向

编辑
机器学习,排序学习,统计学习理论,数据挖掘

兰艳艳代表论著

编辑
[1] Yadong Zhu, Yanyan Lan, Jiafeng Guo, Pan Du, Xueqi Cheng, A Novel Learning to Rank Framework for Topic-Focused Text Summarization. Proceedings of the IEEE International Conference on Data Mining 2013 (ICDM’13), Dallas, Texas, USA, 2013.
[2] Yanyan Lan, Shuzi Niu, Jiafeng Guo, Xueqi Cheng, Is Top-k Sufficient for Ranking? Proceedings of the 22th ACM Conference on Information and Knowledge Management (CIKM’13), San Francisco, USA, 2013.
[3] Shuzi Niu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng, Stochastic Rank Aggregation. Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI’13), Washington, USA, 2013.
[4] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Chaosheng Fan, and Xueqi Cheng, Informational Friend Recommendation in Social Media. Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’13), Dublin, Ireland, 2013.
[5] Chaosheng Fan, Yanyan Lan, Jiafeng Guo, Zuoquan Lin, and Xueqi Cheng, Collaborative Factorization for Recommender Systems. Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’13), Dublin, Ireland, 2013.
[6] Shuzi Niu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng, 自适应层次Top-k 排序学习模型, Proceedings of the 19th China Conference on Information Retrieval (CCIR’13), Shanxi, China, 2013.
[7] Yadong Zhu, Jiafeng Guo, Yanyan Lan, Xueqi Cheng, Xiaoming Yu, 基于时空局部性的层次化查询结果缓存机制。Proceedings of the 19th China Conference on Information Retrieval (CCIR’13), Shanxi, China, 2013.
[8] Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng, A Biterm Topic Model for Short Texts. Proceedings of the 22nd International World Wide Web ConferenceRio Ode Karo, Brazil, 2013.
[9] Lu Bai, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng, Group Sparse Topical Coding: From Code to Topic, Proceedings of the 6th International conference on Web Search and Data Mining
[10] Xiaofei Zhu, Jiafeng Guo, Xueqi Cheng, and Yanyan Lan, and Volfgang Nejdl, Recommending High Utility Query via Session-Flow Graph, Proceedings of the 34th European Conference on Information Retrieval
[11] Xiaofei Zhu, Jiafeng Guo, Xueqi Cheng and Yanyan Lan. A Two-Step Absorbing Random Work Based High Utility Query Recommendation, Journal of Computer Research and Development, 2013.
[12] Yanyan Lan, Jiafeng Guo, Xueqi Cheng, and Tie-Yan Liu. Statistical Consistency of Ranking Methods in A Rank-Differentiable Probability Space, Proceedings of Neural Information Processing Systems
[13] Shuzi Niu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng, A New Probabilistic Model for Top-k Ranking Problem, Proceedings of The 21th ACM Conference on Information and Knowledge Management
[14] Xiaofei Zhu, Jiafeng Guo, Xueqi Cheng, and Yanyan Lan, More Than Relevance: High Utility Query Recommendation By Mining Users' Search Behaviors, Proceedings of The 21th ACM Conference on Information and Knowledge Management
[15] Shuzi Niu, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng, Top-k Learning to Rank: Labeling, Ranking and Evaluation. Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’12)Portland, Oregon, USA, 2012. (Best Student Paper Award)
[16] Yadong Zhu, Yuanhai Xue, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng, Xiaoming Yu. Exploring and Exploiting Proximity Statistic for Information Retrieval Model. Proceedings of the 8th Asia Information Retrieval Societies Conference (AIRS’12), pp: 1-13, Tianjin, China, 2012.
[17] Shengxian Wan, Jiafeng Guo, Yanyan Lan, and Xueqi cheng, 基于传播模拟的消息流行度预测。Proceedings of the 18th China Conference on Information Retrieval (CCIR’12), Jiangxi, China, 2012.
[18] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma, and Hang Li, Ranking Measures and Loss Functions in Learning to Rank. Proceedings of the 24th Annual Conference on Neural Information Processing Systems Foundation (NIPS’09)
[19] Yanyan Lan, Tie-Yan Liu, Zhiming Ma, and Hang Li, Generalization Analysis of Listwise Learning-to-Rank Algorithms. Proceedings of the 26th International Conference on Machine Learning (ICML’09),
[20] Yanyan Lan, Tie-Yan Liu, Zhiming Ma, and Hang Li, Query-Level Stability and Generalization in Learning to Rank. Proceedings of the 25th International Conference on Machine Learning (ICML’08)

兰艳艳科研项目

编辑
[1] 国家自然科学青年基金项目“基于用户评价准则的排序学习算法与理论研究”
[2] 国家863项目子课题“海量Web数据内容管理、分析挖掘技术与大型示范应用”
[3] 国家973项目子课题“社交网络演化的理论和方法研究”
[4] 国家自然科学重点基金项目“WEB搜索与挖掘的新理论与方法--支持舆情监控的Web搜索与挖掘的理论与方法研究”

兰艳艳学科类别

编辑
计算机软件与理论

兰艳艳所属部门

编辑
网路数据科学与工程重点实验室

兰艳艳专家类别

编辑
副高 [1] 
参考资料
  • 1.    兰艳艳   .中国科学院计算技术研究所.2014-09-9[引用日期2014-09-9]
词条标签:
非文化 文化